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S U M M A R Y  
The free-surface elevation Caused by the planing motion of a low-aspect-ratio flat ship at infinite Froude number is 
investigated. A relation is obtained between the physical characteristics of the planing hull and the extent to which 
it is wetted. Analytic results are presented in the case of laterally-uniform longitudinal hull slope. 

1. Introduction 

Planing of a boat at high speed on a free surface has been investigated both theoretically and 
experimentally by a number of authors. A comprehensive bibliography of experimental 
papers published before 1964 may be found in D. Savitsky's [1] paper on planing hull 
design. 

Early theoretical work was done by Weinblum [2], Wagner [3, 4] and Green [5, 6]. 
Wagner [-3] investigates both two- and three-dimensional planing problems at infinite 
Froude number and shows that, in his linearised formulation, the flow is equivalent to flow 
past a thin wing with only its lower side in contact with the fluid. He shows that the splash 
or spray plume associated with planing problems may be represented in the linearised 
problem by a square-root singularity in the pressure at the leading edges. 

More recent publications include those of Tulin [7], Maruo [8] and Tuck [9]. Tulin [7] 
considers a slender ship, which he then assumes is also flat, and linearises Laplace's equation 
and the boundary conditions accordingly. However, to this linearised problem, he adds a 
spray plume flow at the leading edges. This effect is of second order in the slenderness and, as 
it is the only effect of this order which is included, it provides an inconsistent solution of the 
problem, displaying some but not necessarily all second order effects, but correct to first 
order. 

With the exception of Tuck [-9], who draws attention to the fact that a "flat plate" does 
not necessarily imply a rectangular section shape, none of the abovementioned authors are 
concerned with the shape of either the planing hull or the free surface. Most assume that the 
complete hull shape, including the shape of the wetted area, is fixed and given. Oertel [10] 
shows for a flat ship that, if the hull shape is prescribed, the extent to which it is wetted is 
determined as part of the solution, and conversely. 

The present paper is an extension of the low-aspect-ratio flat-ship theory of Tuck [9], and 
shows how the geometric characteristics of such a hull are inter-related. The formulation of 
the problem follows that given by Tuck, except that only zero gravity (i.e. infinite Froude 
number or very high speed) is considered here. General expressions, describing the 
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relationship between the hull characteristics of a planing boat and the free surface elevation 
outside the boat, are derived for monotone hull shapes. In the special case when the hull 
slope in the direction of motion is laterally uniform, analytic results are obtained which 
directly relate the hull slope, hull section shape and waterplane shape. 

It is also shown in this particular case that, when r/(x, s) has positive curvature, the 
computed pressure vanishes forward of the supposed trailing edge and becomes negative 
thereafter, suggesting that smooth flow detachment occurs forward of the station of 
maximum cross-section. 

2. Mathematical formulation 

A flat ship of low-aspect-ratio is assumed to be moving with speed U in the negative s- 
direction, the origin of the co-ordinates being fixed to the bow, as shown in Figure 1. 

U 

Figure 1. Co-ordinate system. 

t S 

The surface of the ship is given by 

y = ~/(x, s) (2.1) 

for Ixl < b(s) and s < L, where b(s) is the half-waterplane width at station s and L is the 
length of the ship. The function r/is usually negative, as most of the hull lies below the 
equilibrium free surface y = 0. Outside the hull surface, equation (2.1) defines the free- 
surface elevation caused by the ship. 

Assuming that the flow is irrotational, the velocity field is given by 

q = v ~  = V(Us  + ~)  

where ~b is the perturbation velocity potential satisfying the full three-dimensional Laplace 
equation, 

exx + ~ .  + 4's, = 0 

for y < v/(x, s). 
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Planing of a low-aspect-ratio flat ship 45 

The exact hull boundary condition is 

~b, = (U + Os)r& + ~bxr/~, (2.2) 

which is applied on the hull surface y = r/(x, s). Outside the hull surface, equation (2.2) is the 
kinematic condition on the unknown free surface. For  9 = 0, the dynamic free-surface 
condition is 

P/p + Ud?s + ½lV~bl 2 = 0, (2.3) 

where P is defined as the excess of pressure over atmospheric at the free surface. 
The ship is assumed not only to be flat, but also to be slender, with 

D ¢ B ¢ L ,  

where D is the draft and B the beam of the ship. That  is, if 

D = O(ct).L 

and 

B = O(e).L, 

for small parameters ~ and e, then 

~e. 

Making the small-draft approximation, and then the low-aspect-ratio approximation, in 
equations (2.2) and (2.3) respectively, gives 

q~y = Ur/S on y = 0 (2.4) 

and 

P/p + U~b s = 0 on y = 0. (2.5) 

The linearised boundary conditions are applied on y = 0 because, as ~ ~ 0, the hull 
reduces to its pr6jection on the plane y = 0. Since the ship is slender, ~b is the potential for 
the cross-flow problem in the (x, y)-plane and satisfies in the limit as e--, 0 the two- 
dimensional Laplace equation 

4~xx + q~yy = 0, 

for y < 0. 

3. Monotone hull shapes 

It will be assumed throughout this and the following section that r/(x, s) is a strictly 
monotone-decreasing function of s. The function defining the waterplane, x = b(s), is also 
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Figure 2. Cross-flow plane. 
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assumed to be strictly monotonic, so that the flow does not separate from the leading edges 
of the hull upstream of the trailing edge. 

The problem for ~b in the cross-flow plane is shown in Figure 2. Since the flow is 
symmetric about x = 0, only x > 0 will be considered. 

It is convenient to solve the problem in terms of q5 and its harmonic conjugate, the stream 
function, ~,, instead of 4x and ~r" For brevity, ~u(x, s) will be written for ~u(x, 0, s) and 
similarly for ~b, ~'x, etc. 

From equation (2.4), the Cauchy-Riemann equations give, assuming ~u is an odd function 
of x, 

q/(x, s) = - U I x d~ qs(~, s) (3.1) 
30 

on y = 0. Thus, ~u is a known function on the projection of the hull onto the plane y = 0. 
The function Q(x ,  s) is defined by 

Q(x, s) = da P(x, a) = da P(x,  a), 
- o ~  o ( X )  

where So(X ) is the station at which x = b(s), as P = 0 outside the hull projection on y = 0. 
Q(x ,  s) is the loading on a unit-width strip of the hull at offset x, extending from the leading 
edge to station s. From equation (2.5) and the definition of Q, 

Q(x ,  s) = - p U  4~(x, s). (3.2) 

The Hilbert transform (Tricomi [11], p. 173) of a function f is defined by 

H . f ( x )  = ~-  a x - ~ f({)" 

W h e n - a  < x < a, the above integral is interpreted as a Cauchy principal-value integral. 
As ~v is known for hxl < b(s), the Plemelj relations (e.g. see Muskhelishvili, [12]) may be 

used to determine q~ for Ixl < b(s), and hence ~v for Ixl > b(s). Thus 

~ ( x ,  s) = - H ~ O(x,  s) = -- Hb(s)O(x, s), 
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since 4) = 0 for Ixl > b(s), from equation (3.2) and the definition of Q. Thus, 

#)(x, s) = - H ~ q / ( x  s), Ix] < b(s), 

~,(x, s) 
= (b2(s)  - x2)~Hb(s) (b2(s)  _ x 2 ) ~ ,  121 < b(s). (3.3) 

The operator Hb-~s ~ is not normally defined uniquely and, to any such solution (3.3), a 
multiple of (be(s) - x2) -~ must be added (see Tricomi, [11], p. 174). But only integrable 
(inverse square-root) velocity and pressure singularities, and hence a square-root zero in ~b, 
are allowed at leading edges. 

From equation (3.2), the loading on the hull is 

~,(x, s) 
Q(x, s) = - p U ( b 2 ( s )  - x2)~ Hb(s) (b2(s) _ x2)¢. 

To first order in e, the slenderness parameter, Tulin [7] has solved a problem identical to 
that solved here. The above result for 4) agrees to O(e) with Tulin's result for the velocity 
potential, in the special case (to be treated in more detail in the following section) when 
t/s(x, s) is independent of x. 

The function ~ may now be determined for x > b(s), namely 

~(x,  s) = - Hb(Jp(x ,  s) 

1 (b(s) x ~ ~ (b2(s) ~2)½. 1_ ~b(s) dt ~(t ,  s) 
- n :-b(s) -- J-b(s, ~ -- t (b2(s) - t2) ½ 

s) (3.4) = (x 2 - b2(s))~. Hb,s, (b2(~slX_ ' x2)~ " 

The displacement of the free surface caused by the motion of the ship may now be calculated. 
Since 

tls(x, s) = -~'x(X, s)/U, 

equation (3.4) may be used to derive an expression for t/s , namely 

1 
tls(x, s) = - (x 2 _ bZ(s)) ½ Hb(s)~ls(x, s)(b2(s) - x2) ¢, x > b(s). 

So, for x > b(s), 

r/(x, s) = - (x 2 _ b2(a)) ~ Hb(,)tl,(x, a)(b2(a) -- X2) ½. (3.5) 

To first order in the parameter a/e, the surface elevation, t/, is continuous across x = b(s) 
(Tulin, [7]). Therefore, for Ixl < b(s), 
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f l  (x) da t/(X, S) = -- (X 2 _ b2(a)) ½ n~(~)tl,(X , a)(b2(a) - x2) ½ 

+ da rio(x, a) (3.6) 
otx) 

Since there is no disturbance in front of the hull, the lower bound of integration is zero in 
equation (3.5) and in the first integral of equation (3.6). 

When s > L, Q(x, s) = Q(x, L), so ~b(x, s), ~(x, s) and hence r/s(x, s) are independent of s. 
Thus,* 

tl(x, s) = tl(x, L) + (s - L)tl,(x, L). (3.7) 

In this case, a discontinuity occurs in the free-surface elevation at x = ___ b(L). As x ~ b(L)+ 
(i.e. from outside the track of the ship), the surface elevation is unbounded (since r/s(x , L) is 
unbounded), whereas, as x ~ b(L)_ (i.e. from inside the track of the ship), the surface 
elevation is finite. Similarly for x ~ -b (L ) .  This gives rise to the two lines of white water 
which may be seen trailing behind a planing boat from its point of maximum beam (which in 
the present special case necessarily occurs at the trailing edge). Since # = 0 in the present 
model problem, there is no restoring force to damp out the free-surface elevation caused by 
the planing motion. Thus, as s approaches infinity, r/(x, s) becomes negatively infinite for Ixl 
< b(L) and positively infinite for Ixl > b(L). In practice, gravity is always important at a 
sufficiently great distance from the planing boat (e.g. see Wu, 113]). 

Equation (3.6), rewritten in the form 

rl(x, s) = .[i da rio(x, a) + c(x), (3.8) 

where 

f£ 
otx) da 

C(X) = - -  (X 2 __ b2(o. ) )~  

1 fbc~ xd~ x - -  -- (t/,({, a) - ~,(x, a))(b2(a) - {2)½ 
7t d _ b(o) 

f l  (x) do 
- x (x 2 _ b2(a)) , t/,(x, a), (3.9) 

shows that the input hull shape (i.e. j~ dtr t/,(x, a)) is not the actual wetted hull shape. The 
true hull shape, given by equation (3.8), is determined by the relationship between the 
physical properties of the planing hull described in equation (3.9). 

If the waterplane shape b(s) and the hull slope r/s(x, s) are known, then equation (3.8) 
uniquely determines the underwater hull shape, i.e. given the waterplane and the hull 
longitudinal slope, the wetted hull is fully determined. Unfortunately, this is not the problem 
of greatest practical significance. Usually, the shape of the complete hull (both wetted and 

* It  is assumed that  t/(x, s) is cont inuous  across the trailing edge. 

Journal o f  Engineerino Math., Vol. 12 (1978) 43-57 



Planin9 of a low-aspect-ratio flat ship 49 

non-wetted portions) is assumed known and it is the extent of the wetted area, i.e. the 
function b(s), which is to be determined as part of the solution of the hydrodynamic 
problem. So, equation (3.9), with c(x) known, is to be considered as an integral equation to 
determine the unknown function b(s). Except in the most simple cases, the direct mathemati- 
cal problem of finding b(s) is a difficult task, as it involves the solution of an integral 
equation over a region which is itself unknown. Progress may be possible by adopting a 
trial-and-error approach using solutions of the indirect problem, i.e. the problem in which 
b(s) is assumed known. In the following section, a special case in which the direct problem 
has an explicit solution will be discussed. 

4. A planing hull with constant section shape 

The results of the last section will now be applied to the case when the hull slope in the s- 
direction is independent of x, i.e. ~/s(x, s) = - f ( s ) .  This implies that all sections are of the 
same shape, one section being obtained from another by a vertical translation. 

When s < L, equations (3.8) and (3.5) respectively give 

~(x, s) = 

i.e. 

q(x, s) = 

Writing 

o(~) f(a) 
- fl + x fl (x2 _ bZ(a)) ~ , x < b(s) 

f ]  f (a )  da (x 2 _ bZ(a)) ½ Hb(,~)(b2(a) - x2) ½, x > b(s), 

fl f l  °(~) f (a)  - daf(a)  + x da (x 2 _ b2(a))½ , 

fl " )  - d~rf(a)+x d a ( x  2 _ b 2 ( a ) )  r ,  

x < b(s) 

x > b(s). 

('so(x) f(a) (4.1) 
c(x) = x Jo da (x 2 _ b2(a))½ , 

v = c(x) is the equation of the hull cross-section shape. Only the vertical position of the 
section relative to the free surface is controlled by the station co-ordinate s, and is of an 
amount 

- f l  daf(a).  

When s > L, equation (3.7) gives 
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- d a f ( a )  - (s - L ) f ( L )  + c(x), 

+ x(s - L ) f ( L )  
(x 2 - b2(L))½ ' 

- (s - L ) f ( L )  

x < b(L)  

x > b(L) 

where c(x)  is defined as in equation (4.1). 
If the waterplane shape b(s) and the hull s lope-f (s )  are known, then equation (4.1) 

determines the hull cross-section shape function c(x). Conversely, if b(s) is an unknown 
function, and c(x), f ( s )  are known then b(s) may be determined uniquely by inverting 
equation (4.1), as follows. 

The substitution 

fl = b(a) 

followed by the transformations 

r = f12 

and 

t = X  2 

yield the equation 

f~ G(r) D(t)  = dr 

where 

D(t)  = c(t½)/t ~, 

G(r)  = F(r½)/2z ½ 

and 

F(fl) = f (a) /b ' (a ) .  

This is in the form of Abel's integral equation (see Tricomi [11], p. 39) and has the unique 
solution 

or 

G(t) 1 d 

b'(s) - ~ -d-x-x d~ (x 2 _ ~2)~ , 
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where x -- b(s). Since b'(s) = dx/ds, equation (4.2) gives 

f(s) _ 2 d { f~ d~ c(() ] 
ds (x - U )  

and so 

daf(a) -- ~ (x 2 - -  ~ 2 ) a x  . (4.3) 

Expressing the left and right sides as F(s) and G(x) respectively, equation (4.3) may be 
written more simply as 

F(s) = G(x). 

Since F is a known function of s and G is a known function of x, x is now a known function 
of s, identifiable as x = b(s), as required. Thus, the shape of the wetted area may be expressed 
as a unique function of the hull shape. However, except in the most simple cases, only 
implicit expressions for x may be obtained. 

For example, if 

c(x) = cx p, for some real number p (p > 0), 

then 

[- fs 711p 
b(s)= K [  jodaf(a) j , (4.4) 

where 

K = n/cB(½, (p + 1)/2) 

and B(u, v) is the beta function defined in Gradshteyn and Ryzhik [14]. In particular, in the 
case of a "flat plate" where th(x, s) is constant, then the waterplane has the same shape as the 
hull cross-section. For example, a triangular cross-section implies necessarily a triangular 
waterplane. Oertel [10] shows that, for a flat ship of finite span, a triangular waterplane 
produces an approximately V-shaped hull, which becomes more exact as the aspect ratio 
decreases. This result has also been used by Savitsky [1]. From equation (4.4), if p = 1, i.e. 
the cross-section is triangular, then the waterplane has the same shape as the input hull, i.e. 
~ daf(a). 

Figure 3 shows some results for other cross-section shapes and hull slopes. It is easily seen 
from this table that, as the hull cross-section becomes more cusped, so does the shape of the 
wetted area and that the rate at which it becomes more cusped relative to that of the hull 
cross-section depends directly on the power of s in t/8(x, s). 

When b(s) and c(x) are known, equation (4.2) is an expression determining t/8(x, s) 
uniquely. It is clear, therefore, that there is a direct relationship between hull cross-section 
shape, waterplane shape and hull slope in the s-direction and that, given any two, the third is 
predetermined. 

For the particular case of a low-aspect-ratio wedge, i.e. 

~ ( x , s ) =  - a ,  ]xl <b(s), 
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Hull 
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Figure 3. Wetted area shapes for given hull section shapes and hull slopes. 

and  

c(x)  = cx,  

where 0~ and c are smaU constants, the above results simplify considerably. From equation 
(4.4), 

b(s) = n~s/2c  = fls, say. 

K e n  s < Z~ 

~(x, s) = ~ - us + ~x 7r/2#, x < #s 
-0cs + ex arcsin ([3s/x)/#, x > fls. ( 

The shape of the free surface for s = constant is shown in Figure 4. At x = fls, rl~ is infinite, 

but r/~s, s) is finite and ~/= O(x -2) as x approaches infinity, r/(x, s) = 0 when x = 2fls/n. 

Thus, the actual wetted width of the planing hull is n/2  times the wetted width measured in 
the absence of the uniform stream, in agreement with Wagner's I-3] results. 

When s > L, 

- us + ux  n/2fl,  (s - L ) u x  

~l(x, s) = - u s  + ux  arcs in( /3L/x) /B + (x 2 _ ilL2) ~ , 

x < i l L  

x > flZ. 

The shape of the free Surface for s = constant is shown in Figure 5. Note that the free-surface 
elevation is now theoretically infinite along x = b(L), as discussed earlier. 

A more realistic shape for a planing hull is one with a chine, i.e. a discontinuity in r/~(x, s). 
Such a shape is shown in Figure 6. In order that the results obtained in this section 
concerning waterplane shape may be applied to this problem, the point x = B at which the 
discontinuity occurs must remain constant with respect to s, i.e. the chine must occur along 
a fixed ,~ffset x. 
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~ ~ ~ X -~-(s-~t] 

-0C$ -cos  

i 

I 

i 

Figure 4. Free-surface shape for s < L. Figure 5. Free-surface shape for s > L. 

S / .x 

Figure 6. Cross-section of a chine. 

When  s < L and x < b(s), it is supposed that  

tl(x,s)= [i fldaf(a) + c~(x)' 
f l  daf(a) + ¢2(X), 

0 < x < B  

B < x < b(s), 

where c a and c 2 are known  functions o f x  and  f i s  a known function of a, but  b(s) is yet to be 
determined,  cl(B ) and c2(B ) need not  be equal, as shown in Figure 6, as the results are still 

valid for the case of a positive j u m p  of 0(~)  in c(x) = cl(x ) + c2(x) at x = B. However ,  any 

c(x) which produces  a n o n - m o n o t o n e  b(s) is not  permissible, since separa t ion will occur 

f rom a n o n - m o n o t o n e  waterplane  shape and the prob lem is considerably altered. 
Indicat ions are that  if C(Xl) = c(x2), where x 1 < B and x 2 > B, i.e. cl(xl) = c2(x2) , then 

b(s) will be non-mono tone .  When  s < s o, where b(so) = B, 

tl(x, s) = - f~ daf(a) + el(x), x < b(s). 

Once b(s) is known,  q m a y  be determined outside the hull by using equat ions (3.5) and (3.7). 
F r o m  equat ion (4.3). 

f l  2 f f  c~(~) 
daf(a) = ~ d~ when x < B, 

(x  ~ - ¢ ~ ) ~ '  
(4.5) 
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and 

daf(~) = ~- d~ + d~ when x > B. (4.6) 
(x ~ - ~ ' ) ~  7 (x ~ _ ~2)=*, 

From these two equations, the function defining the waterplane shape, x = b(s), may be 
determined. It is clear that these results may be readily generalised to the case of a finite 
number of discontinuities in t/x(x, s). 

When an implicit relation for x is obtained, the waterplane shape may be determined as 
follows. If equations (4.5) and (4.6) are rewritten as 

F(s) = G(x), (4.7) 

a graph of G(x) vs. x is drawn. From equation (4.7), this is also a graph of F(s) vs. x. Since 
F(s) is a known function of s, the vertical axis may be rescaled to give a graph of s vs. x, i.e. 
the waterplane shape. For example, if ~l~(x,s)= - ~ ,  then F(s)= as and the graph 
immediately gives the waterplane shape multiplied by a constant. Further examples are 
given in Figure 7. 

Cross-section Shape F(s) versus x 

~Y B / 

,, 

I X  

~Y B / , x  ' , /  , f  
i " - X  

i 
i 
i 
t / 

~(~ 

I .x 

I 

i X  
B 

~ :x 

Figure 7. Determining the waterplane shape for a given section shape. 

5. The occurrence of negative pressures 

In obtaining the results of Section 3, it was assumed that the trailing edge was at station s 
= L. Hence, the wetted length, L, along the keel line was fixed and, given any underwater 
hull shape, the waterplane shape, described by the function x = b(s), was the only 
undetermined characteristic of the hull. In this section, it will be shown that, in some cases, 
this assumption cannot be made. 
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When r/s(x, s) = - f ( s ) ,  the pressure, P(x, s), is given by 

/ 
P(x, s) = pU 2 tf '(s)(bZ(s) - x2) ~ 

Therefore, along the keel line, x = 0 ,  

f (s)b(s)b'(s)  "~ 
+ (b2(s) - x2)½/" 

P(O, s) = pUZ(f'(s)b(s) + f(s)b'(s)). 

55 

(5.1) 

f(s) = 2e(L - s), s < L 

and 

c(x) = cx, 

where ~ and c are small positive constants. Note that s = L is the point of maximum draft, 
and the assumption of a monotone-increasing hull form is satisfied. Then, 

f ' (s )  = - 2 ~  

and is negative everywhere. From equation (4.2), 

b(s) = zEo~s(2L -- s)/2c 

and, from equation (5.2), 

P(O, s) = npU2ct2(4l~ - 12Ls + 6s2)/2c. (5.3) 

At s = L, f(s)b'(s) = 0, but f ' (s)b(s) < 0. Hence, if equation (5.2) did describe the actual 
pressure for all stations s along x = 0, then P(0, L) would be negative. Thus, the flow must 
have separated forward of s = L. In fact, from equation (5.3), P(0, s) = 0 when s = s~(0) 

= L - L/x/~,  which is 57.7% forward of L. 
From equation (5.1), P(x, s) vanishes on the curve s = sm(x), where 

x = na(3s 4 - 12s3L + 14S2m L2 -- 4smL3)~/2c 

and is negative for points (x, s) downstream of this curve. This suggests that the flow 
separates from the underside of the hull along the given curve and that the waterplane has 
the shape shown in Figure 8. However, it can only be conjectured that the curve s = sm(x) of 
Figure 8 defines the true trailing edge, since the results of Section 3 cannot be assumed to be 
correct past s = s,,(0). To determine what really happens for s > s,,(0), a new Riemann- 

Journal of Engineering Math., Vol. 12 (1978) 43-57 

For all the hull shapes of this kind considered so far, the right-hand side of equation (5.2) is 

always positive. But, if f ' ( s )<  0, it is possible for this expression to vanish at some station, 
say s = s,,, forward of s = L and to be negative for s > s,,. Since negative pressure is 
unacceptable, it must be assumed that separation has actually taken place forward of L, and 
that the portion of the hull between s = s m and s = L is not wetted (c.f. Oertel, [10]). 

For  example, suppose the hull has a parabolic keel profile and triangular sections, i.e. 

(5.2) 
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Sm(o ) L ~ s 

Figure 8. A possible waterplane shape for parabolic keel lines. 
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Figure 9. The modified Riemann-Hilbert problem for s > s,(0). 

Hilbert problem, shown in Figure 9, must be solved. This corresponds for s > sin(0 ) to a 
waterplane of the general form of Figure 8, but with a separation curve s = sm(x) whose 
shape is to be determined. Work is proceeding on this problem. 
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